
Choreographer Pre-Testing, Code Analysis, and Operational

Testing

David J. Fritz, Christopher Harrison, C.W. Perr, and Steven Hurd
Sandia National Laboratories, Livermore, CA

July 14, 2014

1

UNLIMITED RELEASE

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy's National Nuclear Security Administration
under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

SAND2014-15793R

1 Executive Summary

Choreographer is a “moving target defense system”, designed to protect against attacks
aimed at IP addresses without corresponding domain name system (DNS) lookups. It
coordinates actions between a DNS server and a Network Address Translation (NAT)
device to regularly change which publicly available IP addresses’ traffic will be routed to
the protected device versus routed to a honeypot. More details about how Choreographer
operates can be found in Section 2: Introducing Choreographer. Operational considerations
for the successful deployment of Choreographer can be found in Section 3. The Testing &
Evaluation (T&E) for Choreographer involved 3 phases: Pre-testing, Code Analysis, and
Operational Testing.

Pre-testing, described in Section 4, involved installing and configuring an instance of
Choreographer and verifying it would operate as expected for a simple use case. Our find-
ings were that it was simple and straightforward to prepare a system for a Choreographer
installation as well as configure Choreographer to work in a representative environment.
Code Analysis, described in Section 5, consisted of running a static code analyzer (HP
Fortify) and conducting dynamic analysis tests using the Valgrind instrumentation frame-
work. Choreographer performed well, such that only a few errors that might possibly be
problematic in a given operating situation were identified.

Operational Testing, described in Section 6, involved operating Choreographer in a
representative environment created through Emulytics TM. Depending upon the amount of
server resources dedicated to Choreographer vis-à-vis the amount of client traffic handled,
Choreographer had varying degrees of operational success. In an environment with a
poorly resourced Choreographer server and as few as 50-100 clients, Choreographer failed
to properly route traffic over half the time. Yet, with a well-resourced server, Choreographer
handled over 1000 clients without misrouting. Choreographer demonstrated sensitivity to
low-latency connections as well as high volumes of traffic. In addition, depending upon the
frequency of new connection requests and the size of the address range that Choreographer
has to work with, it is possible for all benefits of Choreographer to be ameliorated by its
need to allow DNS servers rather than the end client to make DNS requests.

Conclusions and Recommendations, listed in Section 7, address the need to understand
the specific use case where Choreographer would be deployed to assess whether there
would be problems resulting from the operational considerations described in Section 3 or
performance concerns from the results of Operational Testing in Section 6. Deployed in an
appropriate architecture with sufficiently light traffic volumes and a well-provisioned server,
it is quite likely that Choreographer would perform satisfactorily. Thus, we recommend
further detailed testing, to potentially include Red Team testing, at such time a specific
use case is identified.

2

2 Introducing Choreographer

Cyber attackers often have low success rates in their attacks: most systems are patched
or have users that do not fall for online deception. Accordingly, these attackers make up
for this in volume. Using large botnets, attackers can launch SQL injection or phishing
attacks against thousands of organizations to scour for a single vulnerable system or user.
In doing so, these attacker optimize for speed and throughput, cutting corners in their
network-level activity.

Choreographer combats these botnet-based attacks by using a moving targets approach.
The Choreographer system directs a domain name system (DNS) server and a network
address translation (NAT) device to cooperate in randomizing the public facing addresses
of protected servers. When a visitor requests the IP address of a particular Web server,
Choreographer detects the request and authorizes the NAT device to allow access to the
server through a particular IP address. When the user accesses the server, the NAT device
will grant access. However, if an attacker accesses the server without using the DNS, the
NAT device will instead direct the attacker to a “honeypot” system. The honeypot is a
carefully monitored system that mimics the intended target, with purported vulnerabilities
for the attacker to exploit. By analyzing the attacker’s behavior on the honeypot, the
organization can learn more about their cyber opponents. Further, if an alarm is tripped
on a legitimate system, a connection can be seamlessly migrated to the honeypot without
alerting the attacker.

Choreographer can also be used for internal systems, rapidly detecting outbreaks of
malware or compromised systems being directed by an attacker. With additional settings,
choreographer could additionally be used for Insider Threat detection.

2.1 Modes of Operation

Choreographer has two main modes of operation: a centralized architecture and a dis-
tributed architecture. In the centralized mode, a single process does everything: it watches
for incoming DNS packets, it determines the IP rotations needed, it updates the DNS
server and it updates the NAT tables. While straightforward, the centralized architecture
does not allow more than one DNS server to be commanded and it can only handle one
NAT device.

The distributed mode eliminates these requirements. In a distributed setting, a sin-
gle instance of Choreographer still monitors traffic and makes IP rotation decisions, but
it contacts agents to update the DNS and NAT infrastructure. This supports multiple
authoritative DNS servers and multiple NAT devices. To perform this coordination, the
system uses TCP sockets and authenticates the connection and each command using one-
way hashes keyed with a preshared secret. This allows the agents to have confidence that
they are interacting with the Choreographer and not an attacker.

3

3 Operational Considerations

Like virtually any technology, Choreographer has a range of use cases where Choreogra-
pher will work well and other use cases where Choreographer would not work well. This
section describes operational considerations for Choreographer, so a potential adopter may
determine whether Choreographer is appropriate for their specific use case.

Ideally, Choreographer would forward all legitimate traffic to its intended destination
and direct all malicious traffic to the ”honeypot”. However, in a typical operational envi-
ronment, it’s reasonable to assume that there is some risk, however slight, of misdirection.
Especially with respect to the misdirection of legitimate traffic, we recommend that an
organization deploying Choreographer should identify the percentage of misdirection that
is acceptable.

The operational considerations are a function of how Choreographer is deployed and
configured. While there are an infinite number of permutations regarding deployment
and configuration details, this section focuses on a single main implementation: Providing
services to users on the internet.

3.1 DNS Considerations

In the case of providing services to users on the internet, there are a few important opera-
tional considerations with respect to domain name services. First, if there are DNS servers
not being controlled by Choreographer in the DNS hierarchy above the DNS server Chore-
ographer is controlling, that insist on being authoritative for the domain, Choreographer
will almost certain not work properly.

In addition, the client side of the DNS hierarchy can cause operational problems for
Choreographer. Many of the DNS requests that Choreographer uses to identify legitimate
connections come from DNS servers rather than directly from the system initiating the
connection request. To compensate for these indirect requests, Choreographer injects an
’open’ firewall rule that will allow any host from any IP address to connect to the protected
server. This open firewall rule will be in place until expiration of the Time to Live (TTL)
value that is configured for the DNS zone. All connections during this window of time will
result in an IP address-specific firewall rule being created. The TTL value is used both as
the length of time Choreographer will allow the open firewall rule to be active as well as
the value set for TTL included in the DNS reply to the DNS request. This TTL value is
at the root of problems that can exist on the client side of the DNS hierarchy.

If a caching DNS server (not under the control of Choreographer) receives a second
connection request during Choreographer’s Time-to-Live (TTL) window, that second con-
nection will be provided the same IP address provided to the first connection. In this case,
the second client’s attempt to connect using that original destination IP address will be
routed to the honeypot if the TTL expires before this connection is established. However,
given the fairly small time window where this is likely to occur, this specific scenario is

4

Figure 1: DNS hierarchy indicating the parts of DNS that Choreographer is likely to
control.

deemed unlikely. Example, roughly speaking, if the TTL value was 5 seconds and typical
round-trip propagation delays were on the order of 200 milliseconds, implying the one way
delay is on the order of 100 milliseconds, the time where this would occur is for connection
requests occurring between the 4.9 and 5.0 second marks, as connections occurring before
and after this window would not be re-routed, because connections occurring before would
be properly routed and connections occurring after would initiate a new DNS request to
the Choreographer server, resulting in a new destination IP address provided as the DNS
reply.

This artifact is also problematic in the scenario where a malicious connection takes

5

place, without a valid DNS request, and is routed to the protected server incorrectly.
Essentially, for every open firewall rule created, Choreographer removes its protection on
that particular IP for the length of the DNS TTL. The problem may be amplified when
many legitimate connections are made, and is discussed in the Access Window Aliasing
section.

However, this scenario assumes that the caching DNS server was honoring the TTL
value supplied by Choreographer. DNS servers are not strictly required to honor the
TTL they are provided. If a longer TTL was substituted, any connections between the
expiration of the TTL supplied by Choreographer and the TTL used by the caching DNS
server would be routed to the honeypot, as the caching DNS server would be providing an
expired address to queries that occur during that time. The testing team does not have
definitive information on the prevalence of caching DNS servers that do not honor TTL
values they receive from other DNS servers (such as Choreographer).

Figure 2: Two legitimate clients making DNS queries to a caching DNS server not under
the control of Choreographer. If the second query arrives within the TTL of the first
record, the second client will be redirected to the honeypot incorrectly.

Additionally, most operating systems use some form of host-level nameserver caching.
These host-level tools often disregard DNS TTL entries and instead use TTL values con-
figured at the host. For example, the nscd caching service, available on most GNU/Linux
distributions, explicitly does not honor DNS TTL records and has a default TTL of 3600
seconds (1 hour) for any DNS reply.

Will these caching DNS issues impact a specific use case? The most appropriate answer
is ”it depends”. Under the assumption that caching DNS servers respect Choreographer’s
TTL, redirection to the ”honeypot” is largely limited to edge cases for connections occuring
right about the time the TTL expires. If it is rare that two clients anywhere on the internet,
much less using the same caching DNS server, attempt to connect during a single instance of
the TTL, this almost certainly won’t be a problem. In other use cases, detailed statistical
analyses of server logs correlated with DNS server logs would be required to yield the
answer.

6

3.2 DNSSEC

The United States Federal Government, with direction from the Department of Homeland
Security (DHS), The National Institute of Standards and Technology (NIST), and the Office
of Management and Budget (OMB) have mandated that all federal agencies switch to using
DNSSEC. Choreographer, by design, frequently updates zones, and while under DNSSEC
this does not generate data that must be sent upstream, and therefore can maintain the
chain of trust, records must be resigned at every zone change. Furthermore, the NSEC3
extension to DNSSEC, which provides ”denial of existence” service, may have to traverse
the served zones to recompute and resign the NSEC3 record.

The cost of zone signing factors into the maximum rate at which Choreographer can
update zones. For example, we timed resigning a simple zone 1000 times in succession.
The zone was signed with NSEC3 capable, 2048-bit, SHA256 keys (the required algorithm
and minimum length as defined by current DNSSEC standards). The machine used was a
24-core Xeon 2630 machine, with 128GB of RAM. The machine was booted with a custom
init script to ensure only sshd and bash were running (no other non-kernel processes were
running). The time required to complete 1000 zone signings was 40.3 seconds, or 40.3
milliseconds per signing. This cost should be noted when deploying Choreographer.

3.3 Access Window Aliasing Considerations

As noted in an earlier section regarding DNS considerations, DNS requests often come from
a caching DNS server rather than the actual end client system. Choreographer injects an
’open’ firewall rule that allows any host access until TTL expires. This functionality creates
a window of opportunity for any client to attempt to connect using that IP address, even if
the DNS request was made by another client. This results in allowing service to a potential
attacker.

To mitigate this phenomena, Choreographer rotates the IP address associated with the
DNS reply, which adds the difficulty of having to guess the IP address that answers the
DNS request. Each new connection request made to DNS will result in a new IP address
being provided with the DNS reply, except if the minimal IP rotation parameter is used.

The likelihood of a specific window of vulnerability for an adversary to exploit this
is a function of (1) the number of legitimate connection requests, (2) the DNS TTL, (3)
the frequency that Choreographer rotates addresses (configurable) and (4) the size of the
address space used for rotating IP addresses.

As an example, if (1) the number of legitimate connection requests was 600/minute
(or 10/second), (2) each open firewall rule was open for 5 seconds, (3) Choreographer
may rotate the address after 1 second, and (4) the available address space included 200
addresses, the following ratio (2):(3) would determine how many IP addresses are available
for connection without requiring a DNS lookup at a given time. In this case, that would
result in 5 addresses of the 200 addresses being open at any time, and approximately 200

7

seconds being the time required to successfully establish connections to all 200 IP addresses.
The likelihood of these occurrences is reduced when the size of the address space is

increased.

8

4 Pre-Testing

Testing began by first reading the documentation and seeing that Choreographer has two
main modes of operation. A centralized architecture, and a distributed architecture. The
centralized architecture was chosen to test first.

”In the centralized mode, a single process does everything: it watches for in-
coming DNS packets, it determines the IP rotations needed, it updates the DNS
server and it updates the NAT tables. While straightforward, the centralized
architecture does not allow more than one DNS server to be commanded and
it can only handle one NAT device.”

With this information we started to construct the test bed which would be handled
virtually. A base Debian 7 64-bit image was created as a base for the choreographer and
other machines.

The following libraries were installed on the choreographer machine once it was started.

• libpcap-dev

• libbotan1.8-dev

Some specific packages were also included on the other machines to enable the test
environment or other aspects of the test.

The basic network topology was set up to mirror the provided documentation using
virtual machines. The documentation provided the topology in Figure 3

Figure 3: Choreographer EmulyticsTM network topology. Choreographer runs on the center
NAT along with BIND.

The following addresses and address spaces were used for the test, with virtual machines
created for the webserver, the honeypot, choreographer, and client nodes.

9

facebook.com was used as the web server with IP address for facebook.com as 69.63.176.2
The honeypot was given 69.63.176.3, the DNS/DHCP/Choreographer system was given
69.63.176.1/8.8.9.1, with the Choreographer back-end interface (eth1) given 69.63.176.1,
the Choreographer front-end interface (eth0) given 8.8.9.1, and the test VMs given a range
from 8.8.0.0/16 (serving 8.8.8.0/24).

To first test the set up, without choreographer running, the clients were tested to
see if they could connect to facebook by using ‘wget’ and ‘ping’ commands. Once it
was established that the network connections were working as desired choreographer was
installed to be tested.

As recommended in the documentation the file, choreographer.conf, was edited before
compilation in order to fit the test that we were creating. We attempted to follow the
example files provided as closely as possible.

REDACTION NOTICE: The configuration file and any other Choreog-
rapher code is considered proprietary information and has been removed
from this unlimited release report.

At this point Choreographer performed as expected with limited troubleshooting and
configuration with assistance from the the developers. Initial deployment of Choreographer
was non-trivial, but given the stage of development that Choreographer was tested at the
problems encountered were not atypical.

10

5 Code Analysis

Source Code Analysis was conducted via HP’s Fortify and Valgrind.
Fortify is described by HP in the following:

HP Fortify Static Code Analyzer helps verify that your software is trustworthy,
reduce costs, increase productivity and implement secure coding best prac-
tices. Static Code Analyzer scans source code, identifies root causes of soft-
ware security vulnerabilities and correlates and prioritizes results—giving you
line–of–code guidance for closing gaps in your security. To verify that the most
serious issues are addressed first, it correlates and prioritizes results to deliver
an accurate, risk–ranked list of issues.

More information on Fortify can be found at: http://www8.hp.com/us/en/software-
solutions/software-security/

The main rule sets used by Fortify to analyze C++ source code are mainly developed
using the most common vulnerabilities and up to date rule sets.

Valgrind is an instrumentation framework for building dynamic analysis tools. There
are Valgrind tools that can automatically detect many memory management and threading
bugs, and profile your programs in detail. You can also use Valgrind to build new tools.

The Valgrind distribution currently includes six production-quality tools: a memory
error detector, two thread error detectors, a cache and branch-prediction profiler, a call-
graph generating cache and branch-prediction profiler, and a heap profiler. It also includes
three experimental tools: a stack/global array overrun detector, a second heap profiler
that examines how heap blocks are used, and a SimPoint basic block vector generator. It
runs on the following platforms: X86/Linux, AMD64/Linux, ARM/Linux, PPC32/Linux,
PPC64/Linux, S390X/Linux, MIPS32/Linux, MIPS64/Linux, ARM/Android (2.3.x and
later), X86/Android (4.0 and later), X86/Darwin and AMD64/ Darwin (Mac OS X 10.7,
with limited support for 10.8).

More information on Valgrind can be found at: Valgrind (http://valgrind.org/)

5.1 Fortify

The audited Fortify Report is provided to the technology providers in a separate stand-
alone report.

4 critical errors were found which were determined to be of low risk given how Chore-
ographer is deployed. The common issue in all of the critical errors was the possibility of
a command injection. An attacker would only be able to execute this command if they
already had access to a system, in which case there would be much greater issues to worry
about.

43 high level issues were found, of which 22 were found to be non-issues. 2 were found
to be possible reliability issues as 2 functions were identified which failed to release system

11

http://www8.hp.com/us/en/software-solutions/software-security/
http://www8.hp.com/us/en/software-solutions/software-security/
http://valgrind.org/

resources. The remaining 19 we considered bad practice errors as they calls which allocated
memory but failed to free it. Solutions to all of these issues are recommended in the body
of the Fortify report.

42 low level issues were found, of which 9 were found to be non-issues. 1 issue was
decided to be ‘suspicious’, but will need to be considered by the developers. The remain-
ing issues were all considered ‘bad practice’ as they mostly dealt with calls to possibly
deprecated functions, failure to check against null values in the case of malloc errors, and
variables which were never read. Recommendations were made to correct most of these
issues to help increase the overall reliability of the software.

5.2 Valgrind

Dynamic code analysis is the analysis of computer software that is performed by executing
programs on a real or virtual processor. In this subsection we describe the dynamic analysis
of Choreographer code using Valgrind. We first give an overview of the types of issues that
Valgrind attempts to detect and then list the results of our tests. For dynamic program
analysis to be effective, the target program must be executed with sufficient test inputs to
produce interesting behavior.

The Valgrind framework is a powerful tool to debug your applications, and especially
for memory allocation related bugs. You can get a detailed explanation of all Valgrind
tools in the main site of the project (Valgrind (http://valgrind.org/)) and the Valgrind User
manual (http://valgrind.org/docs/manual/manual.html). Valgrind can be used to analyze
a number of language families (including the C and Java families found in Choreographer).

5.2.1 Memory leaks

Blocks of statically allocated memory, those available in the stack of the process, will be
available as long as the program runs, but only in the specific execution context of each
moment. For example, variables declared at the beginning of a given function will only be
available as long as the execution stays inside that specific function (or in a lower context).
You can view as if those blocks of memory in the stack are automatically de-allocated for
you during the execution of the program when moving to upper contexts.

On the other hand, you can dynamically allocate a block of memory in the heap inside a
given function, and return the pointer to that block of memory (address of the block) to the
upper context, making it available outside of the context where it was originally allocated.
The GNU C Library provides several methods to manage this memory in heap, but
the most common ones are malloc and its variants1 (in malloc.h), which provide an
unconstrained way of allocation in the heap:

void *malloc(size_t size);

1Or any other method which uses malloc() internally, like strdup()

12

http://valgrind.org
http://valgrind.org/docs/manual/manual.html
http://valgrind.org/docs/manual/manual.html

void *calloc(size_t nelem, size_t elsize);

void *realloc(void *ptr, size_t size);

void free(void *ptr);

In C, the programmer is in charge of explicitly de-allocating that block of memory when
it no longer will be used. Other programming languages implement a mechanism to handle
this de-allocation requirement, usually called a garbage collector. Thus, a memory
leak occurs when a block of dynamically allocated memory(using malloc() for
example) is never freed/deallocated explicitly (with free()).

5.2.2 Valgrind Findings

The reports generated by Valgrind are available separately from this report. The reports
generated are quite lengthy, difficult to view and comprehend, and repeat similar finding
many times over. To summarize Valgrind’s main findings, there were 651 memory errors
from 651 different contexts. 6 of those errors were considered to be suppressed. That
said, it is the opinion of the testers that the main memory leaks were not the fault of
the developers, but rather resulting from the use of libpcap and libstdc++. However,
being integral to Choreographers functionality, it may be worthwhile to examine Valgrind’s
output to identify memory leaks which affect scalability.

13

6 Operational Testing

6.1 Operational Testing Environment Information

Along with code analysis, a detailed in-situ evaluation of Choreographer was performed
using minimega, a large scale EmulyticsTM platform designed to provide a virtualization
based emulation of arbitrary network topologies. Minimega can launch up to 100 thousand
endpoints consisting of Linux, Windows, and Android devices, and can provide represen-
tative traffic generation to and from all endpoints. Additionally, minimega can facilitate
attaching real hardware to an emulated experiment (such as a transparent mail filter,
router, etc.) at any point within the network topology.

6.1.1 Network Topology

REDACTION NOTICE: The configuration file and any other Choreog-
rapher code is considered proprietary information and has been removed
from this unlimited release report. This included the Emulytics TM plat-
form used in testing Choreographer

Choreographer is designed to run on a Network Address Translation (NAT) device, which
behaves like a router but masks the IP address of hosts behind the NAT. The small-
est representative network topology designed to work with Choreographer consists of the
Choreographer device situated as a NAT in front of at least two servers - a protected
server and a honeypot. On the other side of the Choreographer device are a number of
clients making requests to access the protected server, whose IP address is masked by the
Choreographer NAT. Figure (redacted) shows our experimental topology.

Invalid requests made to the protected server will be automatically rerouted to the
honeypot based on the policies of Choreographer. Valid requests, those made by first
making a DNS lookup to the host in question, are routed to the protected server. Chore-
ographer must then be able to control an instance of a DNS server, in particular BIND.
Choreographer supports a distributed model in which one or more BIND servers can be
controlled remotely by Choreographer, allowing the decoupling of DNS service from the
Choreographer NAT device.

To simplify the experiment, we chose to run BIND locally on the Choreographer NAT,
and run Choreographer without external agents. This allows us to focus on evaluating
the core functionality of Choreographer without introducing the extra complexity of its
distributed model.

The EmulyticsTM environment can create impractical network timing scenarios includ-
ing sub-microsecond latency between hosts. To provide a more representative environment,

14

we inject an artificial latency into the network based on a truncated normal distribution
with u=20ms and sigma=5ms. We also ran all tests under a high latency model using
u=200ms and sigma=5ms. The 20ms and 200ms means represent the ends of the most
credible portion of the latency spectrum in practice.

Although the timing distribution used here supports injecting zero additional latency,
a zero latency packet transmission cannot exist in our platform. If the distribution injects
no latency, the packet will arrive at the destination host with a latency equal to that of
the underlying physical network of the EmulyticsTM platform (generally less than 1ms),
which is not realistic.

6.1.2 Traffic Generation

To provide Choreographer with data to consume, we use custom traffic generators run on
each client, and custom services run on both the protected server and honeypot. Once the
response to the DNS query has been received and processed, we generate HTTP, HTTPS,
SSH, and SMTP traffic from the clients to a single domain. The traffic generators perform
legitimate DNS lookups in order to generate requests. To evaluate invalid traffic, the traffic
generators can be configured to access the protected server directly without first making a
DNS request.

The traffic generators randomly make HTTP, HTTPS, SSH, and SMTP transactions
based on a normal distribution with u=1s and sigma=1s following the end of the prior
transaction. It is possible for the normal distribution to result in negative values, which
were again substituted with a 0 value.

6.1.3 Host Configuration

All clients run a custom Linux distribution with 1 CPU, 2GB of RAM, and a single 1Gb in-
terface. The traffic generator software takes a configuration passed on the kernel command
line at boot time.

All routers run the Vyatta router operating system, have 1 CPU, 2GB of RAM, and
at least 2 1Gb interfaces. All routers use OSPF for dynamic routing.

The device runs Debian 7.4, with BIND installed and configured to serve a single record
(facebook.com). The DNS record is configured with a TTL of 5 seconds. This value was
chosen to alleviate window aliasing concerns (discussed later). It should be noted that a 5
second TTL is considered exteremely low, with Disaster Recovery (DR) systems generally
implementing 30 second TTLs.

6.2 Operational Testing Methodology

We ran 9 configurations of scale and traffic mix with each of the latency models described
above, resulting in 18 total tests. The configurations include 50, 100, and 1000 clients, as
well as all valid, no valid, and some valid traffic for each scale. Each test was run for 5

15

minutes, allowing up to several hundred thousand transactions to take place. All traffic
was logged at each client as well as at the server.

Each endpoint in the experiment is a 64-bit Intel-based VM with one CPU and 2GB
of RAM. Each endpoint has a 1Gb link to a 10Gb experiment backplane. A second round
of tests was performed with each endpoint given a 10Gb link with a 30Tb backplane. On
the second round of tests, the Choreographer device was also given 16 CPUs and 16GB of
RAM. The traffic generators are throttled to prevent saturating links.

While Choreographer supports a distributed mode which allows controlling one or more
Choreographer installations remotely, we chose to focus operational testing efforts on the
local mode. This choice was made because the local mode is simpler to configure, control,
and monitor, and issues discovered in the local mode will generally also apply to the
distributed mode.

In general tests were conducted to investigate a breadth of potential issues. Those issues
raised here may require additional investigation to evaluate criteria for implementation and
deployment, either through additional testing by Sandia, or by the software authors.

6.3 Operational Testing Results

A number of potential issues were discovered during the scaled tests. Some of these issues
are artificially more dramatic than we expect to see in a real environment, such as a
sensitivity to latency, but remain salient and are documented here. Additionally, the
virtualization resources allocated to the Choreographer device (which is run as a Virtual
Machine) are artificially limited to induce stress on the device from the clients. Details are
given below, but it is important to note that limits of scale described below can be moved,
but not eliminated, by providing more capable resources to Choreographer.

As noted above, a second round of tests was run to give the Choreographer significantly
more resources under the same load. These tests completed with better results and are
noted below.

6.3.1 Sensitivity to Latency

Choreographer requires a non-zero amount of time after noting a valid DNS request to
inject a new firewall rule for the client making the request. If the client is able to make a
request to the protected server after a valid DNS request before Choreographer can inject
a rule for that client, the client request will be routed to the honeypot incorrectly instead.

In practice, this is far less of an issue than in our EmulyticsTM environment, as it is
capable of allowing clients to make requests with very little latency. We chose to test
with two latency values: 20ms and 200ms. These represent the ends of the most credible
portion of the latency spectrum in practice. After artificially injecting latency into the
environment, as described above, we saw no more issues related to the unrealistically short
latency times resulting from the EmulyticsTM environment.

16

The amount of latency between requests is dependent on how quickly Choreographer
can parse the DNS request and inject a firewall rule. This is in turn dependent on the
CPU performance of the Choreographer device.

In both sets of tests (low and high resource availability), Choreographer demonstrated
sensitivity to latency.

6.3.2 Access Window Aliasing

As discussed in the earlier section regarding operational considerations, to compensate for
indirect DNS requests such as those made by a caching DNS server, Choreographer injects
an ‘open’ firewall rule for all hosts for a period of time (the TTL of the DNS record) after
the valid DNS request is made. This allows the client to make the following request to
the protected server successfully, at which point Choreographer creates a rule unique to
that client as well as any other client who make a connection before the TTL expires. To
combat this, Choreographer rotates the IP address associated with a DNS record, adding
the difficulty of having to guess the IP address given from the original DNS request.

DNS service on the internet typically has a TTL measured in minutes or hours, but
can be as low as several seconds at the expense of additional load on authoritative DNS
servers. To balance the operational considerations, at the suggestion of the technology
providers, all testing used a DNS TTL of 5 seconds, which is several orders of magnitude
shorter than typical TTL values found in DNS replies on the internet.

For a DNS record with a 5 second TTL, this means that Choreographer will inject an
‘open’ rule for a particular destination IP for no more than 5 seconds, allowing the requester
time to make the connection to the protected server. Assuming all open rules stayed active
for 5 seconds with no minimum time set for IP rotation, if Choreographer is protecting a
host using a /24 IPv4 block, this means that once 256 * (60/5) = 3072 requests/minute are
made (assuming they are made uniformly over that minute), Choreographer will have an
‘open’ rule for every IP in the /24 block to all clients. This in effect causes Choreographer
to ‘fail open’.

This effect can be minimized by lowering the TTL and raising the size of the masking
IP space. It may be impractical to use anything larger than a /24 IPv4 block given the
dramatic resource limits of IPv4. However, the typical allocation in IPv6 is a /64, which in
the 5 second TTL example above, would require 221360928884514619392 requests/minute
to create the same aliasing effect.

6.3.3 Sensitivity to Volume of Traffic

Like any network connected device, Choreographer is sensitive to Denial of Service attacks.
Choreographer is unique however in how it responds to a heavy traffic load.

Choreographer uses libpcap to capture DNS traffic in order to make decisions on firewall
rule injection. libpcap is known to be lossy at high traffic volume, which would impact the

17

efficacy of Choreographer. In effect, if Choreographer misses a valid DNS request due to
libpcap dropping buffered packets, then the client, which should be considered legitimate,
will hit the default firewall rule and be routed to the honeypot.

Table 1: Ratio of incorrectly routed requests to total requests with a resource limited
Choreographer.

Number of clients 20ms 200ms

50 11308/16890 (66%) 0/7694 (0%)

100 22696/23693 (96%) 10693/15212 (70%)

1000 194839/202514 (96%) 105789/107733 (98%)

Important Reminder: The initial set of results came from testing using a Choreographer
server that was resource-constrained, having only 1 CPU and 2GB of RAM available.

Table 1 illustrates this phenomenon. All traffic generated in the data in Table 1 is
normal, valid traffic. At 50 clients and a 200ms latency from client to server, no packets are
lost in Choreographer, and all traffic is correctly routed to the protected server. However,
when 100 clients are used, nearly 70% of valid traffic is incorrectly routed to the honeypot.
This becomes far more dramatic with the number of clients.

In the second round of tests, the Choreographer device was given 16 CPUs and 16GB
of RAM with 10GB interfaces. Under the same load, Choreographer lost no packets and
no traffic was incorrectly routed to the honeypot. This is illustrated in Table 2.

Table 2: Ratio of incorrectly routed requests to total requests with more capable Chore-
ographer hardware.

Number of clients 20ms 200ms

50 0/32119 (0%) 0/7510 (0%)

100 0/57961 (0%) 0/14930 (0%)

1000 0/159604 (0%) 0/161753 (0%)

To further illustrate the issues Choreographer has at scale, we re-ran one of the tests us-
ing larger numbers of clients, up to 7500. As the number of clients increased, the amount
of traffic being incorrectly routed to the honeypot increased. With approximately 5000
clients, the Choreographer device began issuing nf conntrack errors, indicating the con-
nection tracking table used for stateful NAT connections in the kernel was overflowing.
After increasing the size of the table dramatically, to one million entries, and lowering the
timeouts on key nf conntrack fields, the table stopped overflowing, but was still slowly

18

increasing in size, and would still overflow in a matter of hours. For this test, we updated
the nf conntrack parameters with those listed in Table 3.

Table 3: nf conntrack parameters used in scaled testing.

Field Value

net.netfilter.nf conntrack generic timeout 60

net.netfilter.nf conntrack tcp timeout established 60

sys/module/nf conntrack/parameters/hashsize 250000

net.netfilter.nf conntrack max 1000000

6.4 Firewall Limits

Choreographer injects firewall rules into the NAT chain for every allowed client. The
maximum number of rules possible in a single chain is limited by the available kernel
memory and the size of each constructed rule, but in practice issues occur well before
the kernel memory allocation is reached. For example, a ruleset of 25000 Choreographer
injected rules will consume over 2GB of kernel memory. Each time a new rule is injected,
the kernel copies the entire table, injects the new rule, loads the new table, and frees the
old table. In the interim, the kernel requires over 4GB of memory to accommodate the
rule injection.

Other limits, such as the size of the stateful connection tracking table, will almost
certainly be reached before any firewall table size limits.

6.5 Operational Testing Conclusions

It should be noted that the exact amount of incorrectly routed traffic is dependent on the
performance of the Choreographer device. In the first round of experiments, Choreographer
was run with a single CPU within a Virtual Machine. When run again with more capable
hardware and the same amount of traffic, the proportion of incorrectly routed traffic goes
to zero. However, even with more capable hardware, the issue remains, albeit with different
limits.

There exist other issues at scale beyond the ability of Choreographer to capture and
process all incoming DNS traffic. Choreographer requires the use of a NAT, which main-
tains state for all connections. This can be extremely problematic at scale, as the kernel
will drop packets from reaching the NAT chain of the firewall if the connection tracking
table is full.

These issues are not fundamentally different from those many system administrators
face. Often the solution to these issues include greater hardware resources and fanning

19

load out to many servers. An administrator using Choreographer would need to take care
to ensure that the Choreographer system had enough resources to correctly handle the
expected load of traffic.

20

7 Conclusions and Recommendations

Choreographer performed as expected, and could be a valuable protection in certain envi-
ronments but with some serious limiting factors. The code for Choreographer is relatively
simple and straight-forward.

The issues which face Choreographer are significant, yet from our testing, we believe
they are possible to overcome given an adequately provisioned system as well as an external
system that mitigates DoS attacks or unexplained usage spikes. Some further testing might
be useful to determine Choreographer’s detailed performance characteristics for a specific
use case, but the eventual decision to use Choreographer needs to be made by an informed
customer who can trade off potentially denial of service to some proportion of traffic with
the added security benefit.

Sensitivity to latency is one of the issues found, and was highlighted by the EmulyticsTM

environment used. This sensitivity to latency may be overcome by using more generously
provisioned hardware. Further testing would be required to assure Choreographer’s success-
ful operation and could help to provide better information for given use cases to prospective
users.

The issues with Access Windows Aliasing are a bit more serious, yet can be mitigated by
using larger available address blocks. Unfortunately, expanding the address space may in
turn create a different performance issues under heavy load, depending on the environment.

Ultimately, scalability is the critical concern when deploying Choreographer. It is
sensitive to Denial of Service attacks when receiving a high volume of traffic, in part because
libpcap is lossy at high traffic volume. However what constitutes a “high volume of traffic”
is largely dependent upon the available resources for the Choreographer server. With
a large-enough server, it is possible that only the most high-volume environments could
experience Denial of Service conditions. With existing resources, we were able to model
approximately 7500 discrete clients, generating on the order of 4 to 5 sessions/minute per
client. We can’t speak to other issues that may arise in environments with considerably
more concurrent clients or discrete connections.

We recommend that any further operational testing or red team testing be conducted
to address a specific use case (e.g. server resources, traffic patterns, etc.) to assure Chore-
ographer can perform acceptably without massively over-provisioning the server resources
or having a different performance bottleneck emerge.

21

	Executive Summary
	Introducing Choreographer
	Modes of Operation

	Operational Considerations
	DNS Considerations
	DNSSEC
	Access Window Aliasing Considerations

	Pre-Testing
	Code Analysis
	Fortify
	Valgrind
	Memory leaks
	Valgrind Findings

	Operational Testing
	Operational Testing Environment Information
	Network Topology
	Traffic Generation
	Host Configuration

	Operational Testing Methodology
	Operational Testing Results
	Sensitivity to Latency
	Access Window Aliasing
	Sensitivity to Volume of Traffic

	Firewall Limits
	Operational Testing Conclusions

	Conclusions and Recommendations

